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Abstract. The Web of Data is an inherently distributed environment where on-
tologies are located in (physically) remote locations and are subject to constant
changes. Reasoning is affected by these changes, but the extent and significance
of this dependency is not well-studied yet. To address this problem, this paper
presents an empirical study on how the distribution of ontological data on the
Web affects the outcome of reasoning. We study (1) to what degree datasets de-
pend on external ontologies and (2) to what extent the inclusion of additional
ontological information via IRI de-referencing and the owl:imports directive to
the input datasets leads to new derivations.
We based our study on many RDF datasets and on a large collection of RDFa,
and JSON-LD data embedded into HTML pages. We used both Jena and Pellet in
order to evaluate the results under different semantics. Our results indicate that re-
mote ontologies are often crucial to obtain non-trivial derivations. Unfortunately,
in many cases IRIs were broken and the owl:imports is rarely used. Furthermore,
in some cases the inclusion of remote knowledge either did not yield any addi-
tional derivation or led to errors. Despite these cases, in general, we found that
inclusion of additional ontologies via IRIs de-referencing and owl:imports direc-
tive is very effective for producing new derivations. This indicates that the two
W3C standards for fetching remote ontologies have found their way into practice.
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1 Introduction

The Web contains large volumes of semantically annotated data encoded in RDF [19] or
similar formats. Often, this data contains expressive ontologies that machines can lever-
age to perform reasoning and derive valuable implicit information. Since information
re-usage is a corner stone of the Semantic Web [17], many datasets reuse ontologies
that are already available rather than creating their own ones. These ontologies are dis-
tributed across the Web and the W3C standardized two mechanisms to retrieve them:
IRIs de-referencing [6] and owl:imports [17].

The number and correctness of new derivations that reasoners produce depend on
the availability and quality of these external ontologies. Therefore, it is crucial that rea-
soners can successfully retrieve them and that the union of external ontologies is still



consistent. Unfortunately, the Web is an inherently distributed and uncoordinated envi-
ronment where several factors may preclude the fetching and reusage of remote data.
For example, remote ontologies might silently disappear or move to other locations,
or independent authors may publish ontologies that contain syntactic and/or semantic
mistakes [13]. All these possibilities can heavily affect the output of reasoning or even
make reasoning impossible.

Although much effort has already been invested on studying the quality and acces-
sibility of resources on the Web of Data (WoD) [5, 6, 4], to the best of our knowledge no
work has ever studied how the distribution of ontological data on the web affects rea-
soning. The goal of this paper is to study this from a purely empirical perspective. To
that end, we conduct a number of experiments and analyse the output of reasoning over
a wide range of documents to offer a first preliminary answer to the following questions:
a) how many derivations can reasoners derive from individual documents? b) To what
extent do documents link to external ontologies and how accessible are such links? c)
How many new derivations can reasoners derive after external ontologies are included
and how can we characterize such derivations? d) To what extent does the inclusion
of additional ontological data endanger reasoning? This paper presents a number of
experiments to answer these questions.

As the input for our experiments, we took samples from LODLaundromat (LODL) [4],
which is a large crawl of RDF documents from the WoD, and Web Data Commons
(WDC) [25], which contains extracted RDFa, MicroData, and JSON-LD graphs embed-
ded in the HTML pages. We conducted our experiments using Jena [22] and Pellet [27],
two widely used reasoners, and performed two types of analyses: a quantitative analy-
sis, which focuses on the number of derived triples; and a qualitative analysis, which
looks into the relevance of derived triples with the input document.

We summarise below some key outcomes of our experiments. These will be dis-
cussed in the remainder of this paper with more details:

– In the majority of the cases, reasoning on a single document produces a small num-
ber of derivations that are mostly RDF or OWL axioms;

– Only a small number of IRIs were de-referencable. However, when IRIs could have
been accessed, the inclusion of additional knowledge allowed reasoners to derive
new triples. This finding highlights the importance of maintaining functioning links
in the WoD;

– The directive owl:imports is used only in a very small number of documents (less
than 0.2% documents of LODL and only on 121 graphs out of 500M in WDC). In
the documents that use it, the (recursive) inclusion of the remote ontologies led to a
significant increase of the number of derived triples. This demonstrate the potential
of this mechanism;

– In a non-negligible number of cases, the inclusion of remote ontologies did not lead
to the derivation of new triples. Also, we observed cases where the inclusion of
external ontologies led to semantic conflicts (ABox or TBox conflicts) that failed
Pellet. Additionally, in some cases Jena did not finish reasoning within 72 hours
(despite the fact that on average the number of statements in input was fairly small).

In general, our findings are encouraging because they indicate that remote knowl-
edge (fetched either with IRI de-referencing or via owl:imports) does lead to new valu-



able derivations. However, we have also witnessed several problems which show that
further research is still very much needed.

This paper is structured as follows: Sec. 2 reports on the experimental settings;
Sec. 3 presents the results of the experiments where reasoning was applied without
fetching remote ontologies, Sec. 4 presents the results after we de-referenced IRIs
and Sec. 5 after we imported ontologies via owl:imports. Finally, Sec. 6 reports on
related work while Sec. 7 concludes the paper. An extended version of this paper is
available as technical report at http://hbi250.ops.few.vu.nl/iswc2017/
survey/iswc2017_tr.pdf

2 Experimental setup

In coming sections, we run a number of experiments to analyze how the inclusion of ex-
ternal ontologies from the web affects the outcome of reasoning. However, Prior to that,
in this section, we first provide some information about the setup of our experiments
and define some terms that we are going to use in the rest of this paper.

Inputs On the Web, semantically-annotated data can be encoded either as RDF knowl-
edge graphs (which are serialized in a number of files) or be embedded in HTML
pages. Therefore, we considered two large collections of both types: LODLaundro-
mat (LODL) [4] and the Web Data Commons (WDC) dataset [25]. LODL contains a
collection of RDF files that were either crawled from online archives or submitted to
the system. At the time we conducted this study, the collection consisted of 500K RDF
files from more than 600 domain names. The WDC dataset contains RDFa, Microdata,
Microformat, and JSON-LD data extracted from HTML pages. We use the 2015 crawl
which provides about 541M named graphs from more than 2.7M domain names. We
chose these two datasets because they are, as far as we know, the largest available col-
lections of semantically-annotated data available on the Web. We must stress, however,
that neither of these two collections offers any guarantee of representativeness. As far
as we know, no crawled collection from the Web can make such claim. They simply
represent the best approximation that we have available.

In this paper, we refer to sets of triples which are locally available as documents.
For LODL, a document corresponds to a RDF file. For WDC, a document corresponds
to the set of triples in a named-graph (the named graph is the URI of the webpage
from which the triples were extracted). We refer to the number of triples contained
in a document as its size. We used two reasoners, Pellet [27] (version 2.3.1) and the
OWLMiniReasoner of Jena [22] (version 3.1.0), to evaluate reasoning under different
computational logic. We use these two reasoners (instead of, for instance, more scalable
solutions like RDFox [24], VLog [28] or WebPIE [29]) because they are well-tested
implementations and work under different semantics. The OWLMiniReasoner reasoner
in Jena works under the RDF semantics and supports an incomplete fragment of OWL
Full that omits the forward entailments of minCardinality/someValuesFrom restrictions
(detailed list of the supported constructs is available online1). In contrast, Pellet supports
a sound but incomplete OWL DL reasoning (i.e., SROIQ(D)) [27] and we use it to

1 https://jena.apache.org/documentation/inference/#owl



perform ABox DL reasoning2. Once again, we refer to the online documentation for
a detailed list of the supported constructs. Each reasoner is launched with the default
settings. The only modification is that we disabled the automatic owl:imports inclusion
for both reasoners in all experiments.

We refer to the terms and axioms defined in the RDF [19], RDFS [7], OWL [17],
and XSD [12] specifications as standard terms and standard axioms respectively. A
standard predicate is a standard term that appears as predicate in a triple. We assume
that standard terms and axioms are locally available (but not part of the input document)
because in practice the reasoners have stored a local copy.

Reasoning In this paper, reasoning is used to derive new conclusions. The reasoning
procedure is simple and equivalent for both reasoners: First, we load a set of triples G
into the reasoner. We refer to the set G as the input of the reasoning process. In some
experiments, G equals to a document while in others it will include also some remotely
fetched triples. Then, we query the reasoner with the SPARQL query SELECT ?s ?p
?o { ?s ?p ?o }, which is meant to retrieve all the triples the reasoner can derive.
Each answer returned by the reasoner is translated into a RDF triple 〈?s ?p ?o〉. Let G′

be the set of all returned triples. We call every triple t ∈ G′\G a derived triple and refer
to the set G′ \G as the set of derived triples or derived triples, or in short derivations.
Clearly, this set will be different depending on the used reasoner. We would like to stress
that the purpose of our experiments is not to compare the output of two reasoners but to
analyse their output w.r.t. the inclusion/exclusion of remote ontological information.

Categorization of derivations In order to perform a more fine-grained analysis of the
derived triples, we categorize them based on the complexity of reasoning process that
produces them into the following four disjoint categories:

– Type1 derivations are derivations that contain only standard terms. Typically, triples
in this category are the tautologies extracted from these languages (e.g.,〈rdf:subject
rdf:type rdf:Property〉).

– Type2 derivations contain exactly one non-standard term that appears in one or
more triples in the input set (e.g., 〈:resource rdf:type rdf:Resource〉).

– Type3 derivations contain two non-standard terms that appear in the same input
triple (e.g., if the input contains the triple 〈:ClassA owl:equivalentClass :ClassB〉
then a Type3 derivation could be 〈:ClassB rdfs:subClassOf :ClassA〉).

– Type4 derivations contain two or more non-standard terms that never appeared
in the same input triple (e.g., if the input contains the triples 〈:resource rdf:type
:ClassA〉 and 〈 :ClassA rdfs:subClassOf :ClassB〉 then a Type4 triple could be 〈
:resource rdf:type :ClassB〉).

The reason behind such classification is that Type1 derivations should be easy to
return. Type2 and Type3 derivations are less easy because they require one pass on
the data (Type3 have the additional complexity that the reasoner might need to change
the ordering of the terms). The derivation of Type4 triples usually requires a join be-
tween multiple triples, and thus their derivation is computationally more demanding.

2 TBox and ABox are terms from Description Logics. TBox triples encode ’schema’ information
which is crucial for reasoning while ABox triples encode assertional information.



Most non-trivial implicit knowledge that reasoners derive are usually of Type2, Type3
or Type4.

Failures In some experiments, the reasoners were unable to complete the reasoning
process. Causes for failure varied between a limited scalability of the algorithms/im-
plementation, syntactic errors [5], and ontological inconsistencies [26]. Please note that
the notion ontological inconsistency usually includes unsatisfiability, incoherence, or
inconsistency. However, because reasoners do not crash as a result of unsatisfiability
and incoherence, in this paper we ignore them, and whenever we use the term ontologi-
cal inconsistency or in short inconsistency, we refer to conflicting assertions (ABox) or
axioms (TBox) that make reasoning impossible and cause reasoner to abort the process.

A complete analysis of the failures is beyond the scope of this paper. Here, we say
that a reasoner failed (or that a failure occurred) when the reasoner did not terminate
successfully the reasoning process. We classify failures either as exceptions, which oc-
curred when the reasoner had prematurely terminated (e.g., because of an inconsistency
or a syntactic error in the input), or as timeouts in case the reasoner did not conclude
the inference within 72 hours.

Computing infrastructure Many experiments required several hours to finish. To
speed up the execution, we launched several of them in parallel using the DAS4 cluster3.
Each machine in the cluster has 24G of memory and two quad-core 2.4 GHz CPUs.

Data and source code All data, source code to run the experiments, and all derived
triples are available at http://hbi250.ops.few.vu.nl/iswc2017/survey/.
We believe that publishing all results of our experiments is useful also because such re-
sults can be used as inputs for other studies.

3 Local Reasoning

First, we intend to evaluate how many new triples the reasoners can derive from local
data. But what can be considered as “local” in the Web of Data? One possibility is to
consider all the RDF datasets that are stored on the same website as local. Unfortunately,
there are several repositories that contain datasets from several other locations. Another
possibility is to assume that local data is stored in files that share the same prefix (e.g.
dbpedia-01.gz, dbpedia-02.gz), but this is a rather weak heuristic which does not always
hold in practice. For the LODL dataset, we eventually concluded that the best solution
was to consider as “local” only the triples that are contained in a single document (i.e., a
RDF file for LODL and a named graph for WDC), because documents are the minimal
storage units that are always entirely available on the same physical location. Thus, we
will compute how many new triples reasoners can derive from single documents.

Data Collection In our context, performing reasoning on every document is neither
feasible nor desirable. The infeasibility is due to the large number of documents in
LODL and WDC. We estimated that even if we could use all machines of our cluster
it would take months to finish the computation. The undesirability comes from the fact
that more than two thirds of the documents in LODL are fetched from two sources

3 http://www.cs.vu.nl/das4



#Documents per domain #Triples per Documents
#Domains #Documents Max Average Median Min Max Average Median Min

LODL1 510 673 7 1.3 1 1 5.2M 80.9K 70 1
WDC1 67K 74K 8 1.35 1 1 10.6K 20.5 6 1

Table 1. Statistics about the samples of LODL1 and WDC1 used for local inference.

(a) (b)

Fig. 1. Number of derived triples w.r.t document size on LODL1 (left) and WDC1 (right).

– sonicbanana.cs.wright.edu and worldbank.270a.info – while in the WDC dataset
there is a significant difference between the number of documents from popular do-
main names such as wordpress.com and the ones from less popular sources.

With such large skew in terms of provenance, aggregations over the entire datasets
will be strongly biased towards a few sources. While a simple random sampling strategy
would be enough to reduce the input to a manageable size, it would be ineffective in
removing the bias. To avoid this second problem, we first perform a random sampling
over domain names with the sample size determined by the Cochram’s formula [8] with
a confidence level of 95%, and less than 0.5% margin of error. Then, from every selected
domain name, we randomly picked as many documents as the logarithmic transforma-
tion of number of documents from that domain. This is a well-known methodology for
sampling from skewed sources [32]. We call LODL1 the sample extracted from LODL,
and WDC1 the sample extracted from WDC. Statistics about them are reported in Tab. 1.

One surprising number in Tab. 1 is the relatively small average number of triples
in documents in LODL1. In fact, 673 documents are indeed only a small fraction of all
documents in the LODL collection. Such aggressive reduction is due to the relatively
low number of domains in the collection and the extreme skew of the distribution of
files among them. With such input, we are forced to select only a few documents per
domain, otherwise we would be unable to construct a sample without skew. We believe
this is the fairest methodology in order to present results which are most representative
(i.e., cover the largest number of sources). If the reader is interested in biased results,
we report in the TR the results obtained with a larger randomly selected sample.

Reasoning Results We launched Pellet and Jena over both samples, and report in Fig.1
the number of derivations in relation with the size of the documents. We can draw a few
interesting considerations from these results: First, the number of Pellets’ derivations
is proportional to the size of the input documents. This occurs both with LODL1 and
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Fig. 2. (a) Percentage of documents that yielded derivations of each type. (b) Ratio of each deriva-
tion type w.r.t total number of derivations.

WDC1. The number of the derivations produced by Jena was instead more constant. It
only starts to grow proportionally with the largest LODL1 documents.

Fig. 2a shows the percentage of documents that yielded triples in each of the four
categories outlined in Sec. 2. We see that all documents led to Type1 and Type2 deriva-
tions, regardless of the reasoner used. We inspected samples of the triples in each cat-
egory and found that most Type1 triples are RDFS and OWL axioms, while most of
the Type2 derivations are triples that describe resources or predicates, e.g., both reason-
ers always derive that predicates are instances of rdf:Property. In general, almost all
documents have also led to Type3 derivations. The only exception was WDC1 in com-
bination with Jena since in this case almost 20% of the documents did not return any
Type3 derivation. We manually inspected a sample of Type3 derivations and found that
they resemble to Type2 information in the sense that they also describe predicates and
resources. For example, the statement “a property is a rdfs:subPropertyOf itself” is a
Type3 statement that both reasoners have frequently derived.

We observed that Jena did not derive any Type3 triples if the document contained
only standard predicates. Instead, Pellet frequently derived Type3 triples that state that
classes are equivalent/subclass of themselves. In contrast to Pellet, we noticed that Jena
always returned about 600 Type1 triples regardless of the actual input. This explains
why the number of derivations tends to be constant for Jena in Fig. 1: It mainly consists
of 600 Type1 statements plus some Type2 or Type3 statements that describe resources
and predicates. To explain this more clearly, we show in Fig 2b the ratio of each deriva-
tion type against total number of derivations in the samples. We see from the figure that
Jena on WDC1 only produces Type1 derivations, thus the total number of derivations
tends to remain constant for each document. The situation is different for LODL1 where
the sizes of documents vary considerably. There, a smaller number of all derivations is
of Type1 which indicates that Jena derives significantly more derivations of other types.
Interestingly, we notice from Fig. 2a that all WDC1 documents derive Type2 triples and
about 80% of them derive Type3 derivations with Jena. However, in Fig. 2b we see that
these triples are fewer than Type1 triples. This means that each documents led to only
few Type2 and Type3 statements while the largest number of derivations is of Type1.

Finally, we observed that neither reasoner was able to derive Type4 triples from
WDC1, while for LODL1 only 24% of the documents yielded such derivation. This sug-



100 101 102 103 104 105 106

#Triples

102

103

104

105

106

#
D

e
ri

v
a
ti

o
n

s

Jena

Pellet

Fig. 3. Number of derivations vs document size in the skewed LODL sample

Pellet

Jena

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Type 1 Type 2 Type 3 Type 4

Avg derivation type per document
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gests that in general most of the derivations that we can obtain from single documents
are sort of “descriptions” of the terms in the dataset (e.g., a predicate is an instance of
rdfs:Property, a class is an instance of rdfs:Class, etc.).

In order to provide more insight into how a skewed sample may affect our conclu-
sions, here we compare the results of our experiments over non-skewed LODL1 sample,
with that of the skewed sample of LODL. Fig. 3 shows the number of derivations rel-
ative to the number of triples in the input document for the skewed LODL sample.
By comparing this figure to the Fig. 1 for LODL1 we observe that (especially for Jena
results) the two graphs are different. Furthermore, we compare the ratio of derivation
type w.r.t the total number of derivations in the skewed sample in Fig. 4. By compar-
ing this figure to Fig. 2b for LODL1 documents, we observe a significantly different
view, i.g., while Jena derived mostly Type1 information from the skewed LODL sam-
ple, in the non-skewed sample Type1 information form only a small portion of all in-
formation the Jena derived. Furthermore, in the non-skewed sample, Type4 information
accounts for almost 20% of all derivations of both reasoners, while in the skewed sam-
ple Type4 derivations are almost non-existent. This considerable contrast between the
results of skewed and non-skewed sample stems from the fact that skewed sample is
populated with a large number of small documents with similar structure that belong to
archives that Lodlaundromat crawled from wright.edu. These documents alone account



for roughly 70% of the whole skewed sample from LODL. Thus, it is not surprising
that the results are biased toward the inference results of these documents. The biased
conclusion of the skewed LODL sample shows the necessity for non-skewed sample to
conclude unbiased results.
Failures Type2 and Type3 derivations should be easy to calculate since they can be
typically derived with a single pass on the data. Unfortunately, we still witnessed a
number of failures with both reasoners. These failures were rare in WDC1 (i.e., less than
0.1% for both reasoners, and all these cases were exceptions caused by syntax errors).
With LODL1, Jena successfully finished for more than 99.9% of the input documents.
When it did not, timeout was the primary cause of failure. With Pellet we witnessed a
higher percentage of failures (about 12% of the inputs). In more than 72.5% of these
cases, Pellet threw an exception, while the rest of the cases the reasoner timed out.
Interestingly, more than 92% of exceptions were raised by inconsistencies while the
rest were raised due to other internal reasons (e.g. Unknown concept type exception).

4 IRI De-referencing

We will now present the results of some experiments to investigate whether the inclu-
sion of additional remote content obtained by de-referencing IRIs in the documents
leads to more derivations. To this end, we considered all documents of LODL1 and
WDC1 for which local reasoning succeeded. Given the low failure rate, these samples
are roughly equivalent to the original LODL1 and WDC1 datasets. In this section, we
refer to these two subsets as LODL2 and WDC2 respectively.

Unfortunately, de-referencing every IRI in each document is not technically feasible
due to high latencies and limited bandwidth. To reduce the workload, first we avoided
de-referencing IRIs that were part of the standard vocabularies (RDF, RDFS, OWL,
XSD) since that content is typically already known by the reasoner. Second, we limited
de-referencing to only two subsets of IRIs: predicate IRIs and Class IRIs. The firsts
are IRIs that appear as predicates of triples. These IRIs (excluding those from standard
vocabularies) appear in 99.7% of the LODL2 documents and 83.4% of the WDC2 docu-
ments. The seconds are IRIs that were either explicitly defined as instances of rdfs:Class
or appeared as subjects or objects of predicates that we knew their domains or ranges
were instances of rdfs:Class (e.g., the object of the rdf:type predicate). De-referencing
class IRIs was not always possible: in fact, only 67.63% of documents in LODL2 and
71.79% of documents in WDC2 contain class IRIs. Tab. 2 reports statistics about the
number of distinct predicates and classes in the LODL2 and WDC2 datasets.

Furthermore, not all IRIs could be accessed: Only 4.7% of predicates and 35.9%
of the class IRIs in WDC2 were de-referencable. The LODL2 dataset presented a signif-
icantly different situation: There, roughly 73% of predicates and 74.5% of class IRIs
were accessible. We analyzed the inaccessible predicate IRIs in WDC2 and found that
more than 84.6% of them pointed to non-existent resources on schema.org. We reported
the full list of accessible and inaccessible IRIs in the public repository of this study.
Experimental Procedure We proceeded as follows: First we performed reasoning
only on the single document (see Sec. 3). Then, we repeated the process only consider-
ing the remotely-fetched triples, and finally considering the document plus its remotely-



LODL2 WDC2

Max Average Median Min Max Average Median Min
Predicate 432 14.3 6 0 67 3.6 3 0
Predicate Domains 11 2.5 2 0 5 1.4 1 0
Class 496 7.9 1 0 14 1.3 2 0
Class Domains 11 1.5 1 0 4 0.7 1 0
Table 2. Statistics of predicate/classes IRIs per document in each sample.
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Fig. 5. After de-referencing predicate (P) and class (C) IRIs: Ratio of Deriving, Not Deriving and
Failed reasoning processes (a). Ratio of documents that derive each derivation type (b).

fetched triples. We counted as new only those derivations that could have been derived
in this last step (document plus the remote triples). In other words, we only count the
derivations that were impossible to derive without adding external content to the input.

4.1 Experimental Results

Based on the number of new derivations, we divided the input documents into three
groups: Those that yielded new derivations (Deriving), those that produced no new
derivations (Not-Deriving), and those for which the reasoning process failed (Failure).
Fig. 5a shows the percentage of documents in each group. The figure shows that a
relatively large percentage of documents in LODL2 derived no additional information
after remote triples were added. Furthermore, documents in WDC2 are more likely to
yield new derivation after de-referencing IRIs than documents in LODL2. Moreover, the
figure also suggests that de-referencing class IRIs is more likely to produce additional
derivations than de-referencing predicate IRIs. This is interesting because documents
often contain more predicate IRIs than class IRIs.
Deriving documents To study how the de-referencing of IRIs affects the number of
derivations, Fig. 6 shows a comparison between the size of the input documents and the
number of new derivations. The figure shows that for WDC2, regardless the type of IRI
that is de-referenced and irrespective of the reasoner, the number of new derived triples
is proportional to the size of input document. This is similar to the local reasoning
results (see Fig. 1). On the contrary, the reasoning for LODL2 is different from local
reasoning results, especially with Jena.

In order to gain more insights, we classified the newly derived triples into the four
categories defined in Sec. 2. Fig. 5b reports the ratio of documents that derive each
specific derivation type (T1-T4) after de-referencing predicate (P) or class (C) IRIs.
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Fig. 6. Number of derivations vs input size after de-referencing: classes with Jena (a), predicates
with Jena (b), classes with Pellet (c), predicates with Pellet (d).

Fig. 5b shows a different situation than in the local case (Fig. 2b). If we perform only
local reasoning, then only a rather small percentage of LODL1 documents derived Type4
triples. Instead, after we de-reference IRIs, the majority of documents in both datasets
did derive Type4 triples.

Also, while every document in the local reasoning experiments derived Type1 triples,
such new derivation is almost non-existent after IRIs are de-referenced. The absence of
Type1 new derivations was expected because Type1 triples are most often RDFS and
OWL axioms that reasoners can derive anyway, thus they are not considered as new
derivation. Aside from that, Fig. 5b shows that Jena derived many more Type2 and
Type3 derivations than Pellet. Our manual inspection of these new Type2 and Type3
triples revealed that these derivations are mostly basic statements such as “an entity is
of type owl:Thing”, or “resource is different from another resource”. Pellet is usually
capable of concluding such derivation without additional data; hence, for this reasoner
these statements are not counted as new derivations. This is not the case for Jena, and
therefore it can derive them after external triples are included.

Finally, we observed that with WDC2 documents the number of all Type2, Type3, and
Type4 derivations tends to be proportional to the size of input document. This situation
is different for larger LODL2 documents because these documents tend to use richer
OWL ontologies which trigger more reasoning. Consequently, the number of derived
triples is no longer proportional to the input size.

Not deriving documents Fig. 5a also shows that there are cases where both reasoners
did not derive any new triples. We scrutinized each Not Deriving document and the cor-
responding remotely-fetched triples, and found two main reasons for this: First, in some
cases these triples only stated comments, labels, and descriptions intended for human
interpretation. Reasoners can only conclude a limited number of derivations from such
data. Second, the remote ontologies are dependent on yet more external ontologies, and
so the inclusion of the remote data without its dependencies leads to no new derivation.
Fig. 5a also shows a larger number of Not Deriving and Failure cases with LODL2 than
with WDC2. This was surprising to us since we expected that IRI de-referencing was
more effective in native RDF datasets than in datasets embedded in HTML pages.

Failures Fig. 5a reports a non-negligible number of cases where the inclusion of
remote triples led to a failure of the reasoning process. Note that in this experiment
the input samples only contain documents for which local reasoning had succeeded.



Therefore, the failures we refer to are caused by the inclusion of external ontologies.
Pellet had the largest proportion of failed cases over LODL2 documents (20-40%). From
our execution traces, we noticed that Pellet almost always failed due to inconsistencies
(this accounts for 99% of the cases with predicates, and almost 94% with classes).
Sometimes these inconsistencies were caused by conflicts introduced between triples
fetched from different sources, while sometimes the conflict was between the external
knowledge and the input document. Jena failed less times, but this is due to the fact that
it is less stringent about consistency. Whenever Jena failed, it was because it timed out.

Further inspections indicated that inconsistencies are exacerbated when triples are
included from more sources. When Pellet failed due to inconsistencies over LODL2,
on average we de-referenced predicates from more than 18 sources (median 9), and
classes from more than 11 sources (median 6). The average is significantly lower if we
consider the cases where Pellet did not fail: predicates were from 5 sources (median 2),
and classes from around 7 sources (median 2). This indicates that an excessive linking
to multiple sources increases the chances of stumbling into inconsistencies.

5 OWL imports

Data Collection The directive owl:imports is another standard mechanism to link the
document to external ontologies. In this section, we study how such inclusion affects
the outcome of the reasoning process. This directive is used in less than 0.2% (939
documents) of the whole LODL dataset and in only 121 documents of the WDC dataset.
Therefore, we do not sample them but instead use all of them. First, we executed local
reasoning on them and filtered out all the documents for which this process failed.
This reduced our input to 554 LODL documents (83 sources) while the size of the
WDC documents remained unchanged: 121 documents from 16 different sources. In
this section, we refer to these subsets of documents as LODL3 and WDC3 respectively.

The owl:imports directive defines a transitive process, i.e., an imported ontology
may itself import additional ontologies [1]. The documents in WDC3 only import the
goodrelations4 ontology, which is accessible and does not contain links to any other
ontology. On the other hand, the documents in LODL3 import 221 distinct ontologies
from 62 different domain names. 76.9% of such imported ontologies were accessible,
and only 52 of the documents imported ontologies with nested owl:imports statements.
We found that the maximum length of transitive owl:imports chain is 4. Tab. 3 provides
more information about the documents and the imported ontologies they mention. In the
public repository, we report also the list of all inaccessible ontologies and more details
on the ones that we fetched.
Experimental Procedure We proceeded in a similar way to Sec. 4, namely, we per-
formed three reasoning processes: one over the documents without the imported on-
tologies, one over only the set of imported ontologies, and one over the document and
its imported ontologies combined. Also in this case, we count as new derivation only
those triples that are exclusively present in the last step(i.e., triples that are impossible
to derive without importing external ontologies).

4 http://purl.org/goodrelations/v1



# Triples # Imported ontologies
Max Average Median Min Max Average Median Min

LODL3 4.3M 51.7K 397 2 48 4.5 4 1
WDC3 281 31.1 29 22 1 1 1 1

Table 3. Number of triples and number of imported links per document.

(a) (b)

T1 T2 T3 T4 T1 T2 T3 T4
Pellet Jena

0%

20%

40%

60%

80%

100%

WDC3 LODL3

WDC3 LODL3 WDC3 LODL3
Pellet Jena

0%

20%

40%

60%

80%

100%

Deriving Not Deriving Failure

Fig. 7. (a) Ratio of documents in Derived/Not Derived/Failed groups. (b) Ratio of documents that
derived each type of derivations.

5.1 Experimental Results

Similarly to Sec. 4.1, we categorized documents into the three groups of Deriving, Not-
Deriving, and Failure, and present the collected statistics in Fig. 7a. The figure shows
that both reasoners derived new triples from every document in WDC3. However, we also
see that for a significant number of documents in LODL3 both reasoners were not able
to derive any new triple. This was surprising to us since these documents were explicitly
pointing to the external ontologies so we assumed that the import process would lead to
at least some new derivations.
Deriving documents Fig. 8 reports the number of new derived triples against the
number of triples in the input document. We observe no proportional relation between

(a) (b)

Fig. 8. Number of new derivations vs the document size after importing ontologies using Jena (a),
and Pellet (b).



the number of derived triples and the size on input document in LODL3 and the outcome
with the two reasoners is different. This is in contrast with WDC3 because here both
reasoners derived roughly an equal number of derivations. Furthermore, each reasoner
in WDC3 derived almost the same number of triples per document (dots overlay each
other in the figure). There are two reasons behind such regularity on WDC3: First, as
Tab. 3 shows, documents in WDC3 tend to be of similar size; Second, all documents in
WDC3 import the same ontology (goodrelations).

Similarly as before, we classified the newly derived triples into our four categories
and report the results in Fig. 7b. We notice that the type of new derivations is akin to
what reasoners derived when IRIs were de-referenced (see Fig. 5b). In both cases, new
Type1 triples are almost nonexistent and almost all documents lead to the derivation of
Type3 and Type4 triples. Additionally, we also observe that with Jena more documents
derive Type2 and Type3 triples than with Pellet. As we explained in Sec. 4, this is be-
cause Type2 and Type3 triples usually include information that Pellet can derive without
external ontological data (and hence are not counted as new derivations).

Not Deriving documents While there is no Not Deriving document in WDC3, as Fig. 7a
shows, the percentage of Not Deriving documents in LODL3 is remarkably higher than
when IRIs are de-referenced (see Figure 5a). To find the cause, we studied the connec-
tions between the documents and the ontologies they import. In some cases, we found
that the ontological information included from external sources was wither already in
the document or reasoners were able to derive it from the triples in the document it-
self. In other cases (which were the majority), we found that the owl:imports statement
was the only link between the document and the imported ontology. In other words, no
term from the directly or indirectly imported ontologies was used in triples of the input
document.

We can only speculate on the possible reasons behind the lack of links between
the documents and the imported ontologies. One possible explanation could be that
publishers put the owl:imports statements at the beginning of a large file (as a sort of
“header”) even though the remote knowledge was relevant for triples that were serial-
ized much later on. Then, the large file was split in smaller ones without replicating the
owl:imports statement on each file. In such a case, the only file that would contain the
owl:imports statement is the first split, but this split does not contain any relevant triple
for the remote ontology and hence no new derivation is produced (and the ones that
could benefit from the remote content do not contain a link to the ontology).

Similarly, another case could occur if the publisher stores the TBox and ABox triples
into different files and the owl:imports statement is put in the TBox file even though it
points to relevant information for the ABox triples. In this case, if the ABox files do
not import the TBox file, then the owl:imports statement will appear in a file (the TBox
one) where it is not needed while files which might need it are not properly linked.

Failures In about 18% of the cases, Pellet failed and threw an exception about incon-
sistency. There were no failures with WDC3. Jena timed out in only ∼0.3% of the cases.
Pellet never timed out.



6 Related Work

Various aspects of Linked Open Data have been extensively studied in the last decade.
Studies span a wide range of subjects including the quality of data [23, 20, 4], inconsis-
tencies in the schema [2], the utilization of the standard vocabularies, and the depth and
quality of the ontologies [30, 10, 11]. In [11], the authors provide some statistics about
the utilization of ontologies and vocabularies. Bechhofer et al. [3] analyze a number of
ontologies on the Web and find that the majority are OWL Full, mostly because of the
syntactic errors or misuse of the vocabulary. Wang et al. [30] present similar finding
and also report the frequency of the OWL language constructs and the shape of class
hierarchies in the ontologies. Authors of [15] processed a large number of ontologies
with various reasoners and show that most OWL reasoners are robust against the web.

As part of their research, authors of [9] report that only a small percentage of graphs
on the Web uses owl:imports, a claim that our results confirm. The authors of [16]
introduce ε-Connections to provide modelers with suitable means for developing Web
ontologies in a modular way, and to provide an alternative to owl:imports.

More recently, Glimm et al. [14] discuss the current availability of OWL data on
the Web. They report a detailed analysis on the number of used RDFS/OWL terms and
highlight that the owl:sameAs triples are very popular. Similarly, Matentzoglu et al. [21]
present another evaluation of the OWL landscape on the Web and a method to build an
OWL DL corpus for evaluation of OWL engines. There have also been extensive studies
on quality assessments and consistency of graphs on the Web. For instance, Zaveri et
al. [31] provide a framework for linked data assessment. Feeney et al. [13] found string
interdependencies between vocabularies and provide a tool to combine common linked
data vocabularies into a single local logical model. Furthermore, they suggest a set of
recommendation for linked data ontology design. None of these methods evaluate the
interplay between data distribution and reasoning as we do. Therefore, we believe our
results are a natural complement to all the above works.

7 Conclusions

The goal of this paper was to better understand how the distribution and reusage of on-
tologies affect reasoning on the Web of data. To this end, we analyzed several samples
from LODLaundromat, which is a large crawl of RDF documents, and from Web Data
Commons, which contains knowledge graphs that are embedded in HTML pages. We
selected samples from hundreds of different domains in order to be as representative
as possible. We compared the derivations produced by Pellet and Jena with and with-
out remote external ontologies to understand, both from a quantitative and qualitative
perspective, which are the major changes in terms of new derivations.

What have we learned? If we do not include any remote ontology, then reason-
ing tends to be rather trivial in the sense that it mainly returns RDFS and OWL ax-
ioms or description of the terms used in the document (e.g. that a property is an in-
stance of rdfs:Property). However, if we do include remote ontologies, either by IRI
de-referencing or owl:imports, then reasoners are able to derive many more non-trivial
derivations.



Next to these positive findings, our analysis highlights some important problems:

– Reasoning on single documents is not always possible. In fact, we observed a num-
ber of failures (0.1-12%) during the reasoning process with both reasoners. These
failures are due to either syntax errors, timeouts or inconsistencies;

– There are a non-negligible number of cases where the inclusion of the remote on-
tologies did not lead to any new derivation. Also, there are cases where the inclusion
of remote ontologies breaks the reasoning process since it causes inconsistencies;

– The owl:imports directive is rarely used. Furthermore, it seems in many cases it
is not used correctly (e.g., if the dataset is split in multiple files, the owl:imports
statement is not replicated on each file) and this greatly reduces its potential;

– A significant number of IRIs are not accessible anymore. This is an important prob-
lem because the Semantic Web encourages ontological reuse as a basic principle,
and if an ontology becomes unavailable then all documents that link to it will be
unable to access its knowledge.

Some of these issues are already being studied in the community (for instance the
rare usage of owl:imports is shown in [9], and the problem of non-accessible IRIs is
well-known [18]) while others are not well-studied yet. Possible directions for future
work could aim at researching techniques to selectively pick the “best” remote ontolo-
gies to avoid stumbling in errors. Also, it would be interesting to design methods to try
to recover from situations where the documents do not point to any remote ontology by
considering, for instance, ontologies that were linked for similar data. All these tech-
niques could be potentially useful to make the Semantic Web more resilient to adverse
situations.

With this paper, we provided a first snapshot of the current state of reasoning on
the Web of Data. Our findings are encouraging, and our hope is that they stimulate the
community to reflect on the adoption of current semantic technologies.
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